

W.A.R.S

WATER CONTAMINANT ANALYSIS RAMAN SPECTROMETER

CRITICAL DESIGN REVIEW (FINAL)

Group 5 Sponsored by Ocean Insight

Our Team

George McDonald

Photonic Science & Engineering

Julia Smith-Blanchard

> Photonic Science & Engineering

Sebastien Jouhaud

Computer Engineering

Gibran Khalil

Electrical Engineering

Juan Restrepo Diaz

Electrical Engineering

Water Analysis Spectrometer

- Owned by our sponsor Ocean Insight
- A spectrometer and its illumination system are important tools to help give knowledge that could not be acquired either way. It is a method of understanding molecules and how they interact with light. By analyzing the amount of light absorbed or emitted through a sample we can determine the characteristics of the sample.

MOTIVATION

The overall quality of our drinking water is vital to the health and well-being of all living species on planet Earth, including humans.

Due to all the different sources of water, knowing which ones are safe to drink is essential to avoiding any kind of infections from water contaminants.

The goal behind our project is to create a water quality analyzer using Raman spectroscopy.

Julia Smith

Project Goals

The goal of this project is to build a portable, cost-effective Raman spectrometer that focuses on mainly measuring the contaminants in different water samples. Objectives are good to have to make sure that you are having standards for your project and that it is being fulfilled the prototype will meet the following goals:

Cost

Size

Ease of Use

Julia Smith

Project Objectives

The **core objectives** of this project are to develop a compact spectrometer that contains simple mounted optics.

The **advanced objectives** use a combination of a well-plate reader and a detachable spectrometer to achieve a modular set-up. We will be using a 785 nm wavelength Raman laser and reduce fluoresce from signal.

George McDonald

Specifications and Requirements

<u>Specifications</u>	
Samples to measure	Potassium Perchlorate, Ammonium Nitrate, Sodium Sulfate
Spectral range	532 nm to 618 nm
Hardware Control	GUI fully operates well-plate motor and laser
Integration time	≤ 10 seconds
Computation of Raman Spectra	Software performs image processing of Fizeau fringes
Wavelength	785 nm
Sample size	40 ml
Max laser power	40mW to 50 mW
Spectrometer dimension	3.5" x 2.5" x 1.2"
Raman spectrum resolution	20 cm ⁻¹
Safety interlock engagement time	Instantaneously

Project Features

COMPUTER APPLICATION CONTAMINATI ON DETECTION

MODERATE SPEED

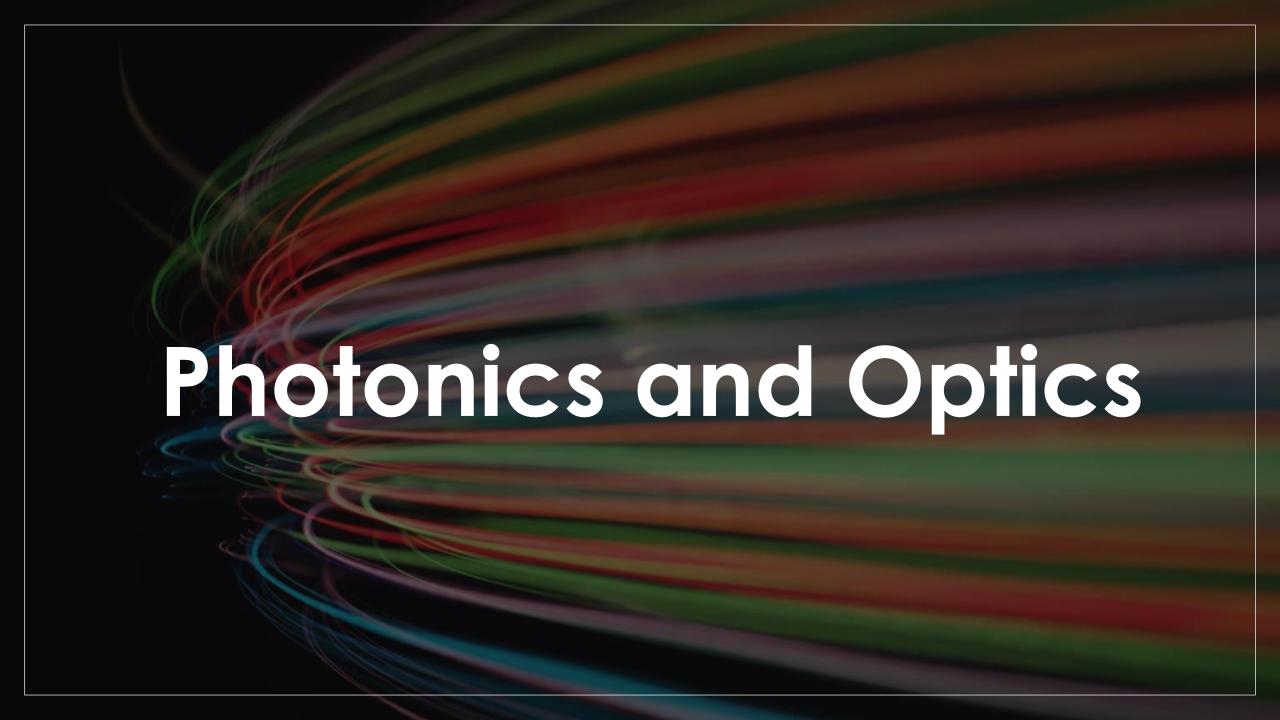
X AND Y TABLE

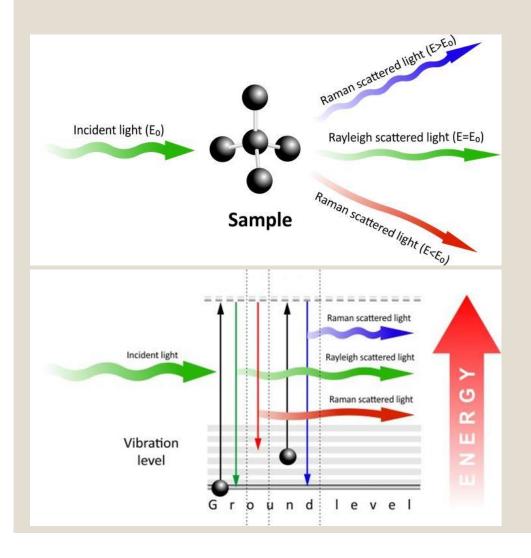
MEASURE AT LEAST 2 SAMPLES

Gibran Khalil

Work Distribution

- Investigate imaging techniques (Julia – P)
- Lens design (George P)
- Contaminant research and selection (Julia - P)
- Spectrometer assembly and design (George – P)
- SHS modeling and simulation (Julia – P)
- Search components(George P)


- Spectral Analysis (P)
- Spectrometer Research (P)
- C++, MATLAB, Serial Commands (P)
- Software integration and communication with various devices (P)


- PCB Design and Assembly(Juan P)
- Power Supply Design (Juan P)
- Research in humidity and thermal impact (Juan – P)
- System integration (Gibran P)
- Precision motor design and selection (Gibran – P)
- Safety Design (Gibran P)

Review on Raman Spectroscopy

Light Interaction

Laser liaht interacts with sample

Laser light causes molecules to vibrate in unique ways.

Small fraction of light is Raman scattered.

Sample Identification

Scattered light contains information about molecular vibrations.

For some scattered light, there is a wavelength shift.

Analyze intensity and wavelength to identify the material.

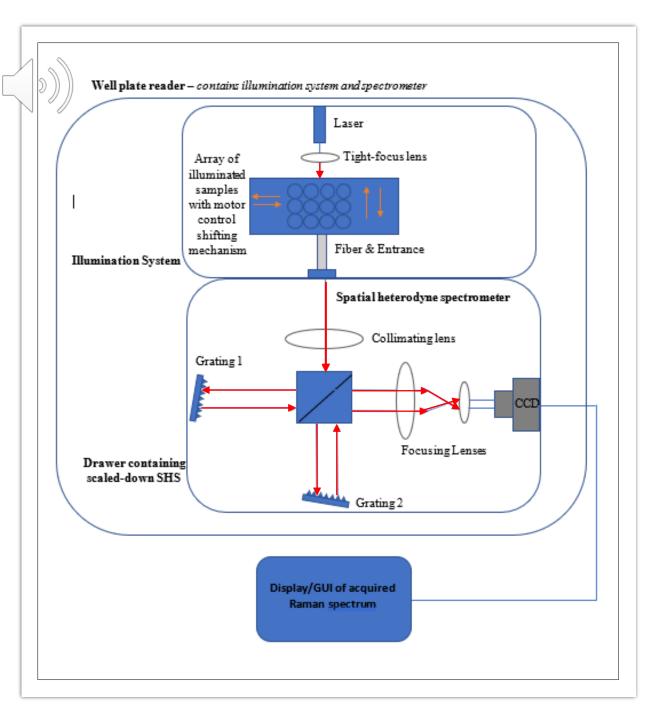
SHS Design Equations

Grating Equation: $k[\sin(\theta_L) + \sin(\theta_L - \gamma)] = \frac{m}{d}$

Littrow Angle: $\theta_L = \sin^{-1}\left(\frac{n\lambda}{2d}\right)$

Fringe Equation: $v_F = 4(k - k_L) \tan(\theta_L)$

Resolving Power: $R = (2)(groove\ density)(grating\ width)$


Spectral Range: $SR = \frac{(number\ of\ pixels\ along\ detector)(\lambda)}{2R}$

Resolution (nm): $FWHM = \Delta \lambda = \frac{\lambda}{R}$

Resolution (cm⁻¹): $\Delta\omega = (10^7) \frac{\Delta\lambda}{(\lambda_{exc})(\lambda)}$

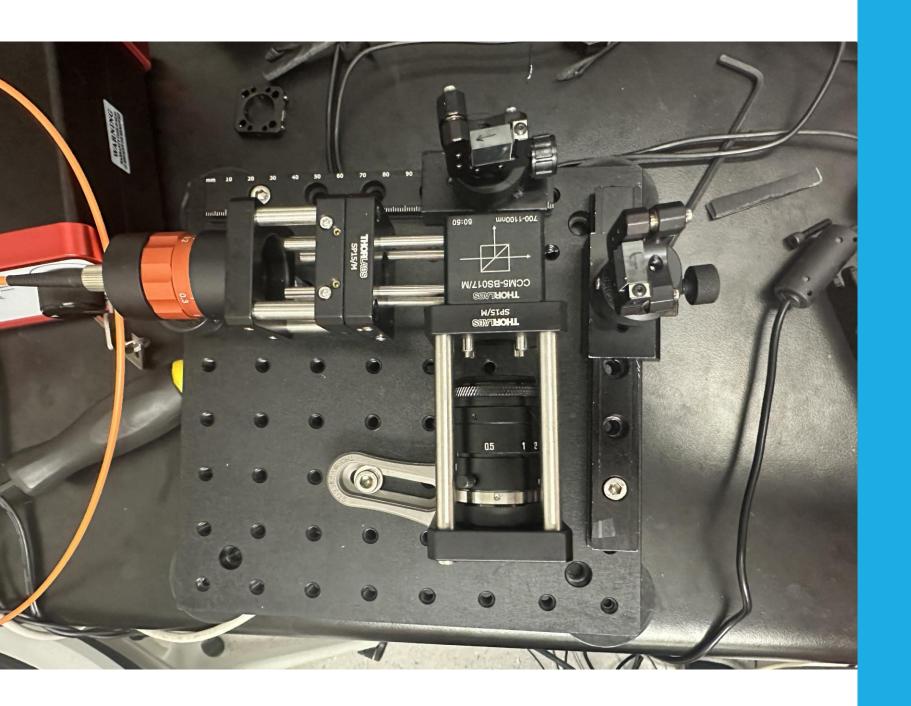
Raman Shift (nm) =
$$\lambda = \left(\frac{1}{\lambda_{exc}[nm]} - \frac{1}{\frac{Raman \, shift \, [cm^{-1}]}{10^7}}\right)^{\frac{1}{2}}$$

Optical Block Diagram

Illumination System

- Laser light guided to sample through emission fiber.
- Sample is struck by laser light.
- Collection fiber accepts scattered light.

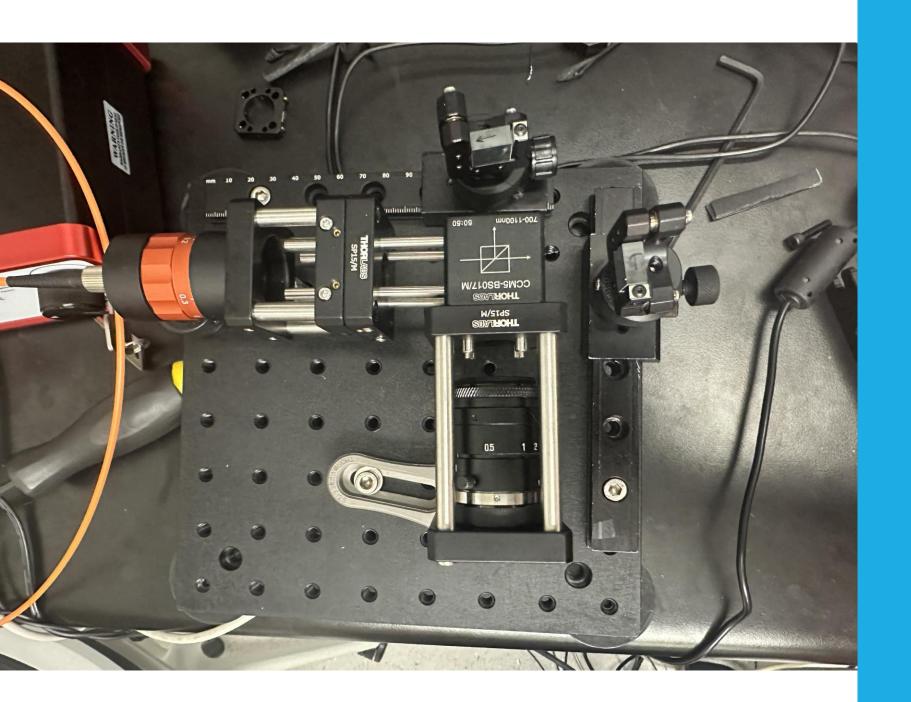
o SHS


- Accepts input light.
- Composed of laser light, scattered light, Raman signal.
- Scattered light splits, diffracts, and recombines.
- Fringe image lands on detector to be processed.

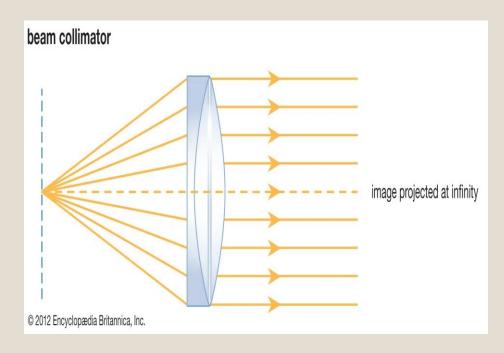
Red arrows = light propagation



Julia Smith



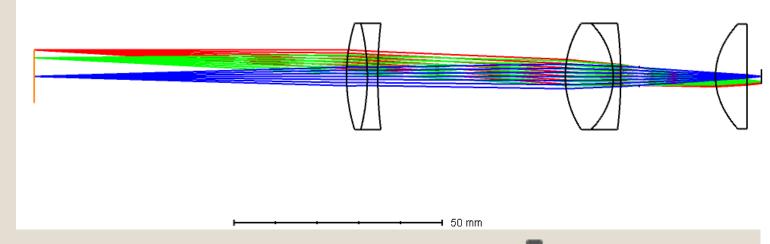
OPTICAL SYSTEM



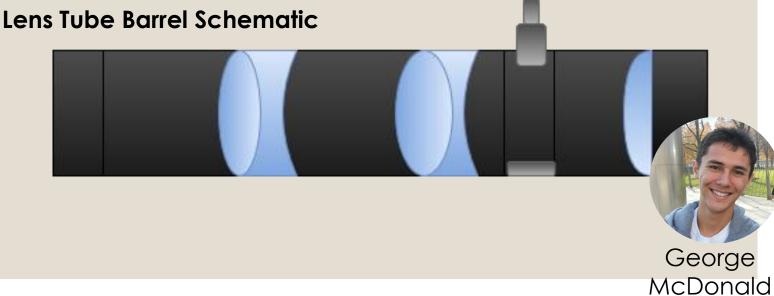
OPTICAL SYSTEM

Optical Component- Collimator Design

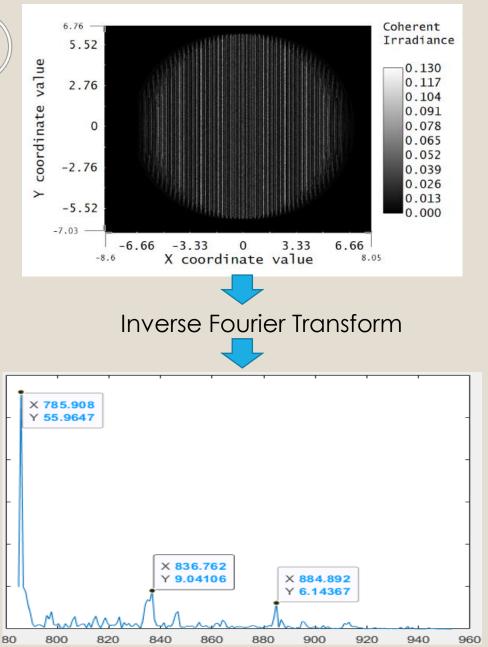
C20SMA-B - Achromatic Fiber Collimator, f = 20 mm, 650 - 1050 nm


 A collimator lens is important design of the spectrometer because it changes the diverging point source to a parallel beam.

Optical ComponentImaging Design


Zemax Design

- Working Distance: ~75mm
- Image Distance: ~ 3.4mm from last surface
- Total optical track length: 99.6mm
- Effective Focal Length: 53.21mm



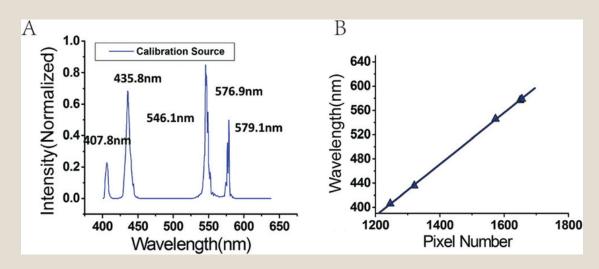
Optical Simulation and Inverse Fourier Transform Result

• ZEMAX

- Input three wavelengths into non-sequential ray trace.
 - 785 nm, 830 nm, & 885 nm

• MATLAB

- Image processing
- Note: Wavelength axis (x-axis) is configured to scale yet.

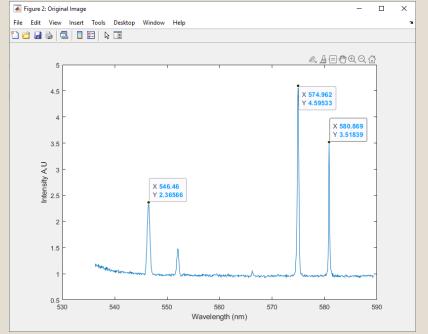


Testing and Verification - Calibration

- Calibration using known light sources.
 - Light source must be within the anticipated spectral range.
 - Light source must be a line source.
- Selected light source:
 - Mercury Contains wavelengths in the expected spectral range of spectrometer with a great peak at 546nm.

Procedure:

- Insert light source, inspect fringes, Fourier transform, plot peaks against number of pixels on detector.
- Pick three peaks (statistical minimum).
- Determine pixel position of the peak. (x-axis is pixel position, y-axis is known peak position in nm)
- Acquire linear calibration curve (y = mx + b)
- o Insert pixel number into x and retrieve y value.



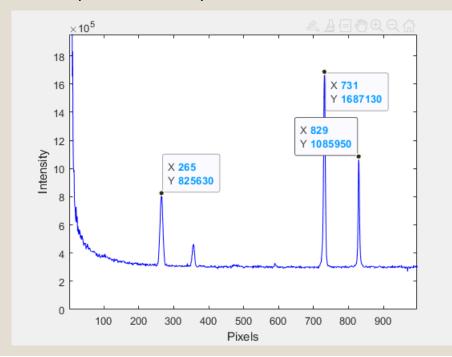
<u>Testing and Verification:</u> <u>Resolving Power and Spectral Range</u>

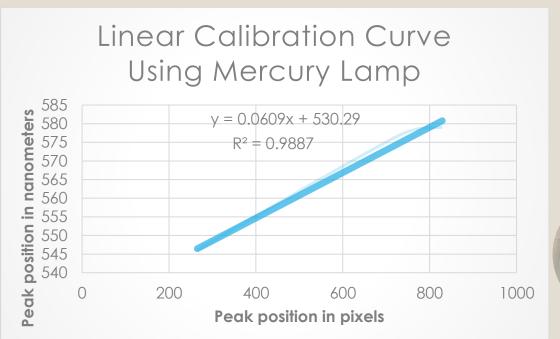
• Mercury

- Resolving Power = $2wd = 2 \times (10mm) \times 300 \frac{l}{mm} = 6000$
- Spectral Range= $\frac{N\lambda}{2R} = \frac{(1944)(532nm)}{(2)(6000)} = 86.184 \text{ nm} -> 2620.58 \text{ cm}^{-1}$
- Resolution = 0.4683nm

Fringes that result from Mercury captured by our SHS

Fourier transform of fringes

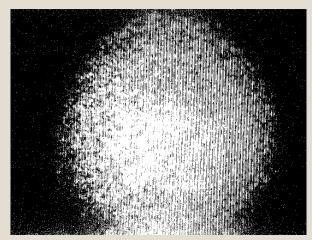


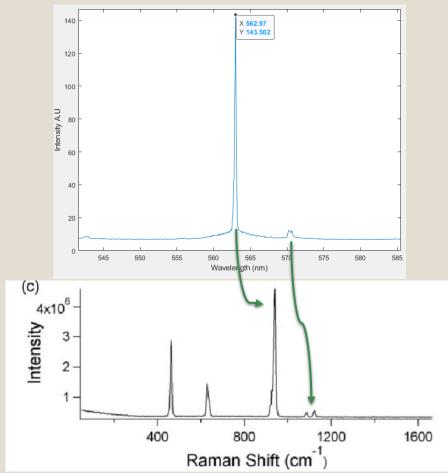


Testing and Verification - Calibration

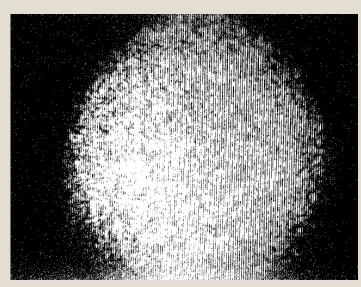
• Mercury

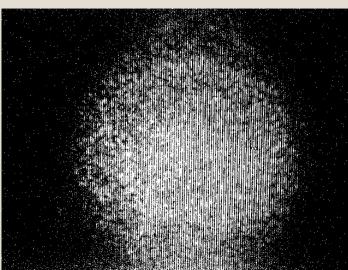
- Known peaks: 546nm (265px), 576nm (731px), and 579nm (829px)
- $R^2 = 0.9887$, y = 0.0609x + 530.29
- Note: Peaks that shift by $800cm^{-1}$ and lower are weak and our SHS may not be sensitive enough to pick them up. Calibration is also not perfectly set.

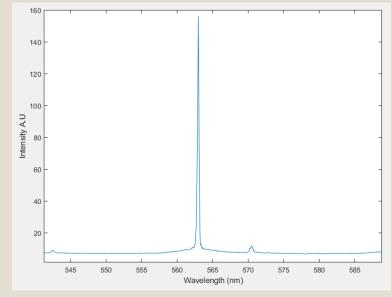


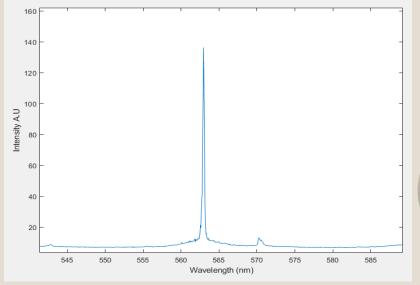

McDonald

Measurements – Potassium Perchlorate


- Two significant peaks observed in the Potassium Perchlorate spectrum.
 - In upper plot: around 940 cm^{-1} peak and a peak around 1060 cm^{-1}
- Mentioned previous slide, note that peaks that shift by $800cm^{-1}$ and lower are weak and our SHS may not be sensitive enough to pick them up. Calibration is also not perfectly set. However, looking at the wavelength ~ 543 nm, you can see that there is a peak with slight intensity of about 8.8 au.

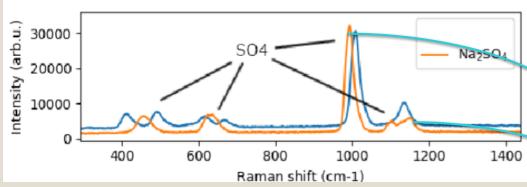

Raman spectrum of KCL04: https://www.researchgate.net/figure/a-The-typical-column-summed-FT-applied-to-potassium-perchlorate-Raman-with-the_fig4_311627976

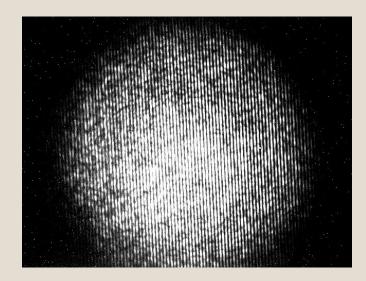

Measurements - Potassium Perchlorate

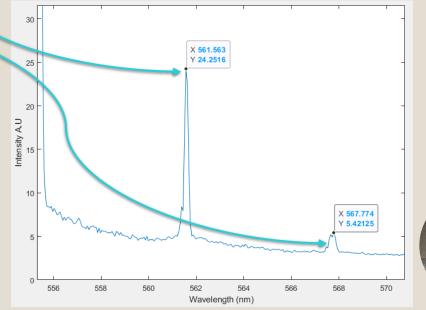


1750mg/ml Exposure Time: 10 seconds

550mg/ml Concentration Exposure Time: 10 seconds

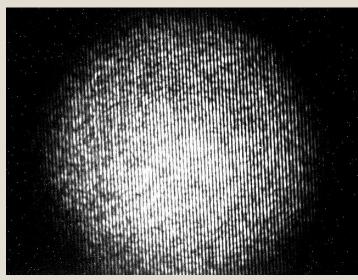



Measurements – Sodium Sulfate

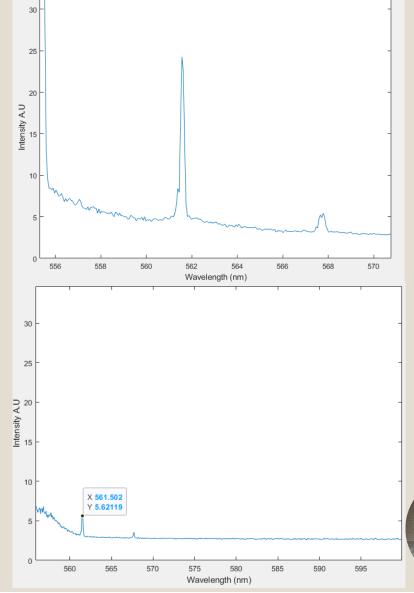

Orange line in comparison spectrum is Sodium Sulfate. Our Raman shift is only about 1000 cm^{-1} and above.

Raman spectrum of Sodium Sulfate. Image taken from https://www.researchgate.net/figure/Example-Raman-spectra-of-CaSO-4-and-Na-2-SO-4-Both-show-typical-sulphate-Raman-modes

- Two significant peaks observed in Sodium Sulfate spectrum.
 - In upper plot: around 993 cm^{-1} peak and a doublet around 1102 cm^{-1}
- 993 cm^{-1} shift from 532nm corresponds to ~561 nm. 1102 cm^{-1} and 1132 cm^{-1} corresponds approximately 565 nm and 566 nm.



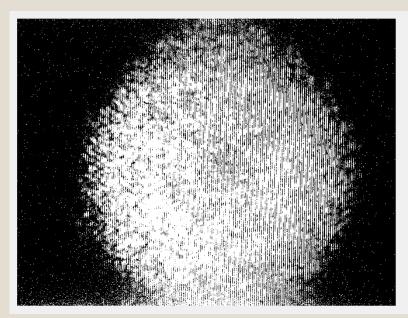
Julia Smith



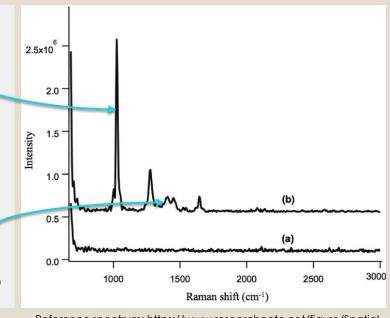
<u>Measurements – Sodium Sulfate</u>

Larger concentration 1750mg/ml Exposure Time: 10 seconds

Smaller Concentration
550mg/ml
Exposure Time: 10 seconds



Julia Smith



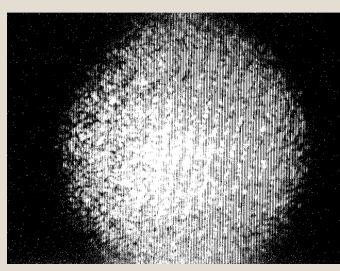
Measurements: Ammonium Nitrate

140 120 100 100 100 40 20 540 550 560 570 Wavelength (nm)

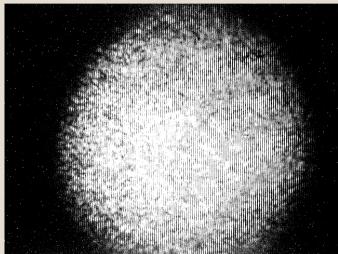
Fringes resulting from Ammonium Nitrate

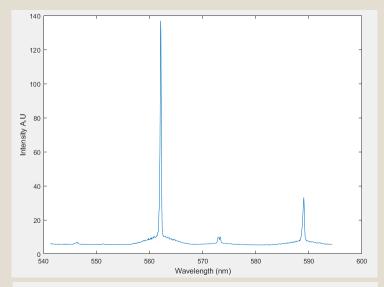
Fourier transform of previous fringes

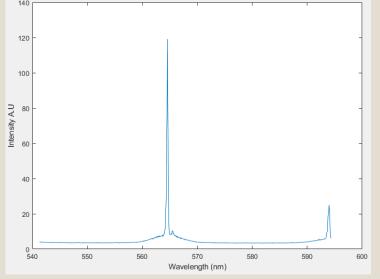
Reference spectrum: https://www.researchgate.net/figure/Spatialheterodyne-Raman-spectra-of-ammonium-nitrate-a-Focused-25-Imdiameter-laser fig5 274093887


- Three significant peaks observed in Ammonium nitrate spectrum.
 - In rightmost plot: $1046cm^{-1}$ peak, $1250cm^{-1}$ peak, and a peak shy of $1450cm^{-1}$
- $1046cm^{-1}$ shift from 532nm corresponds to ~561nm. In middle plot, largest peak is at 562.97nm. This is the $1000cm^{-1}$ peak.

$$1045cm^{-1} \cong (\frac{1}{532nm} - \frac{1}{561nm})$$

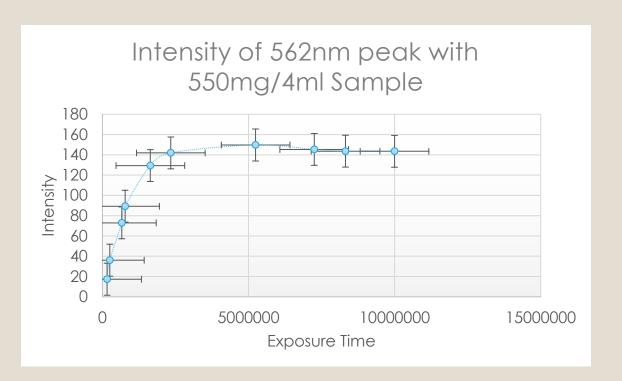

- The doublet at approximately 570nm is present, but for some reason other peak is not present.
- Peak at approximately 590 must be the peak sitting past $1500cm^{-1}$. Gratings were tilted further in order to recalibrate; this may be part of the reason for the intensity of this peak to be larger.


Measurements -Ammonium Nitrate



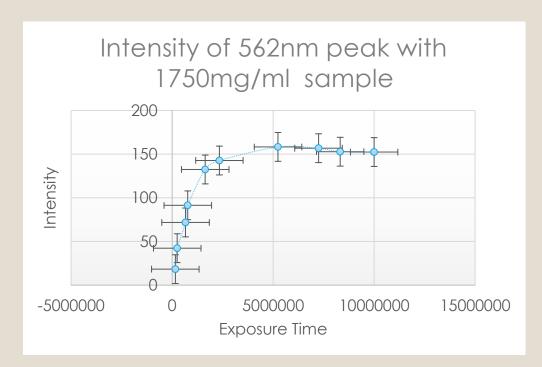
1750mg/ml Exposure Time: 10 seconds

550mg/ml Concentration Exposure Time: 10 seconds



10 Measurements for Potassium Perchlorate

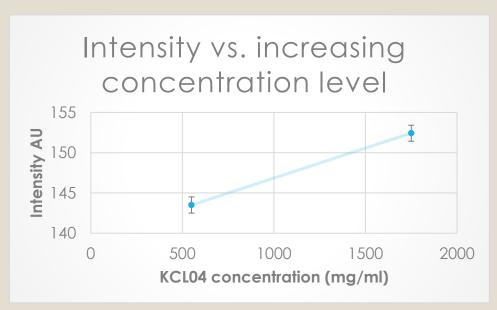
Concentration Level 2						
Exposure Time (us)	Intensity of 562nm peak					
160233	17.3272					
251473	36.1045					
663573	72.9026					
775381	89.304					
1639053	129.431					
2340773	141.9173					
5242008	149.708					
7250572	145.3213					
8321082	143.6018					
1000000	143.502					

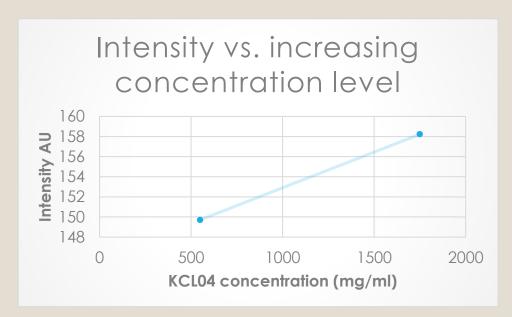

Average Intensity: 106.912

Julia Smith

10 Measurements for Potassium Perchlorate

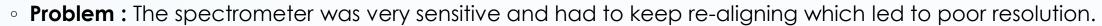
Concentration Level 1					
Exposure Time (us)	Intensity of 562nm peak				
160233	18.3717				
251473	42.314				
663573	71.8034				
775381	91.4056				
1639053	132.477				
2340773	142.814				
5242008	158.23				
7250572	156.81				
8321082	152.8786				
1000000	152.425				

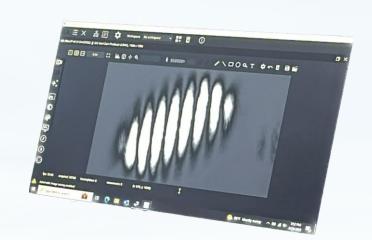

Average Intensity = 111.9529


Julia Smith

10 Measurements for Potassium Perchlorate

Exposure Time: 10s


Exposure Time: 5.24s


Optical Setbacks

Optical problems we ran into:

- **Problem:** 785nm laser was weak to have fringes be detected.
 - Solution: Found a new laser from Ocean Insight because it was strong.
- **Problem :** Gratings were not clean and had defects.
 - Solution: Got new grating for the spectrometer for better results.

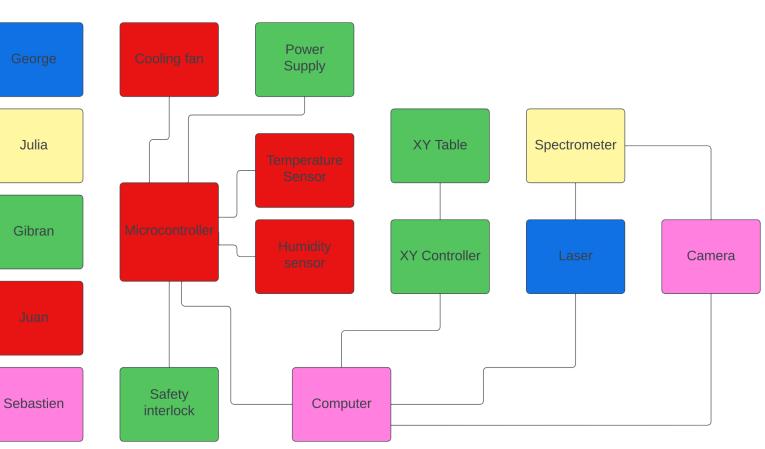
- Solution: Put collars and more stable mounts on the optical breadboard.
- **Problem :** The camera that was bought initially was not efficient enough when we had 785 nm laser.
 - Solution: Used another camera that has a bigger sensing area and is more efficient in visible range. Switching lasers from 785nm to 532nm allowed us to operate in a spectral range where the frequency shifted signals could be picked up along with the corresponding fringes.

Design Constraints and Standards - Optical

The biggest constraint was the laser that we are using for this project since it's a class 3 laser.

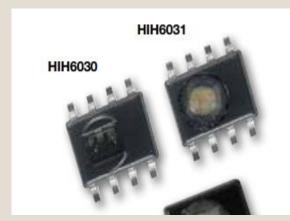
o The beam is hazardous to the eye and skin.

Another constraint was the chemicals we used while testing are flammable and can be harmful to the skin and eyes if not handled properly.


Used a fume hood and gloves.

Julia Smith

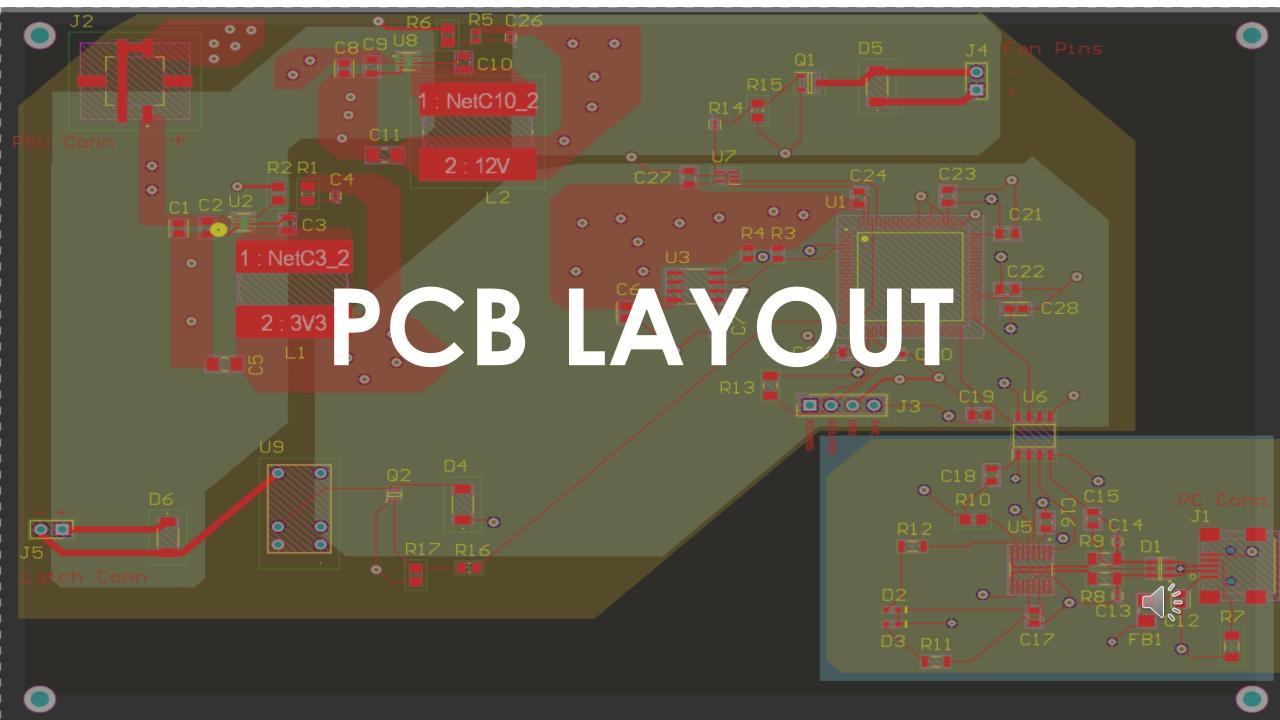
Hardware Block Diagram



Gibran Khalil

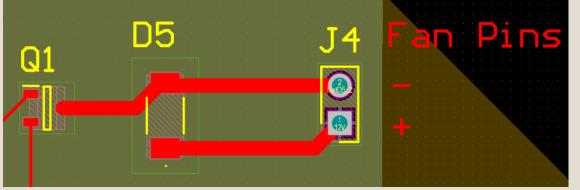
Humidity/Temperature Factors

- Performance and accuracy of spectrometer.
- Water sampling
- Overall system ventilation/moisture
- 12C
- Fan to draw <500mA

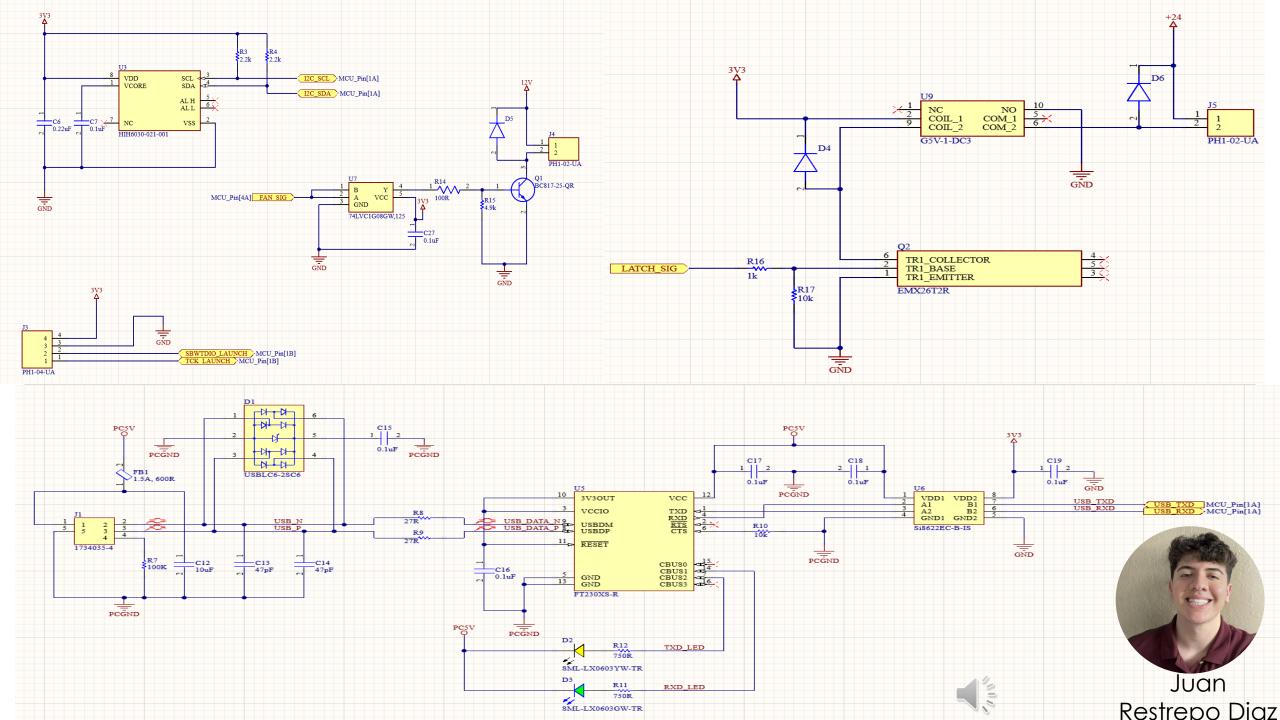

Feature	SHT33-DIS-B2.5kS	SHT40-AD1F-R2	HIH6030-021-001		
Voltage Rating	2.15-5.5V	1.08-3.3V	2.3-5.5V		
Current Drawn	6mA-15mA	3.2mA-5mA	6.5mA		
Size	2.5mm x 2.5mm	1.5mm x 1.5mm	SOIC-8		
Pins	8	4	8		
Price	\$9.60	\$3.12	<mark>\$12.5</mark>		
Diff. Description	DFN Package	Small functionality	SOIC-8 Package		

MODEL	input voltage		input current¹	input power¹	rated speed ¹	airflow²	static pressure ³	noise⁴
	rated (Vdc)	range (Vdc)	max (A)	max (W)	typ (RPM±10%)	(CFM)	(inch H ₂ O)	typ (dBA)
CFM-8025BG-140-396	12	10.8~13.2	0.27	3.24	4,000	41.40	0.27	39.6
CFM-8025BG-150-444	12	10.8~13.2	0.35	4.20	5,000	51.74	0.43	44.5

Juan Restrepo Diaz



PCB Layout & Schematics


- Altium Designer
- Manufacturer Recommendations
- Challenge, Industry

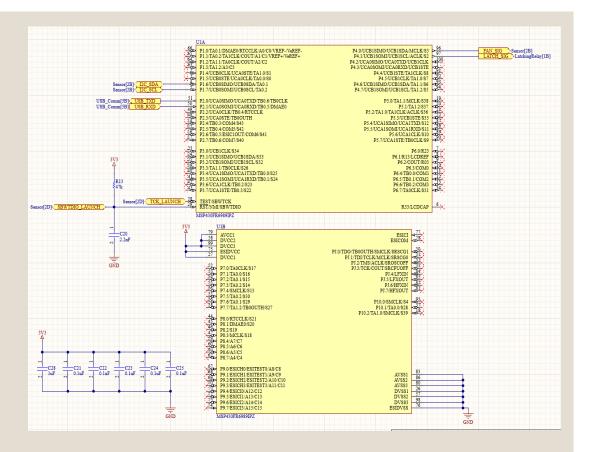
Power Distribution

- 24V Power Supply
- TI WEBench
- Buck Converters into 12V and 3V3 rails
- Current loop layout per manufacturer specifications

R1 R2 R3 R7 R6 C9 R5
VIN C1 C2 C3 C4 C5
000
C6 L1
VOUT

+24 	U2	3V3 =C4 R1

Feature	TPS563300DRLR	LM317MDT-TR	MAX25302BAT D/V+
Voltage Rating	3.8V – 28V	4.2V – 40V	1.7V – 5.5V
Max Current Output	<u>3A</u>	1.5 A	2A
Voltage output	800 mV to 22 V	1.2 V to 37 V	600 mV to 5 V
Size	1.6-mm × 2.1-mm	2.4mm x 6mm	SOIC-8
Pins	8	4	14
Price	<mark>\$1.70</mark>	\$0.90	\$1.94
Reasoning	Buck converter, TI webench simplicity	Outdated component	TDFN package, Does not meet new output requirements

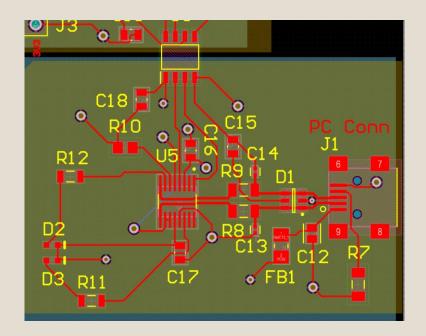


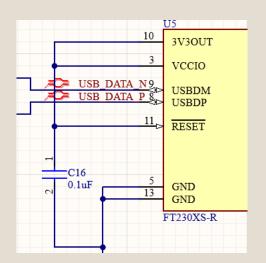
Juan Restrepo Diaz

MCU/ Programming

- Spy-by-Wire technology
- Logic gates for signal reinforcing
- MSP430EXP Development Board

Feature	MSP430FR6989	STM32G431C6T6
Voltage Rating	1.8-3.6 V	1.7-3.6V
GPIO Pins	<mark>74</mark>	38
Protocols supported	I2C, SPI, UART	I2C, SPI, UART, USART, USB
Pins	<mark>100</mark>	48
Price	<mark>\$11.2</mark>	\$7.1
Reasoning	CCS, familiar with programming. Spy-By-Wire programming through Dev board	STMCubeProg





Juan Restrepo Diaz

USB Layout

- Differential Pairs
- UART to USB connection with PC
- Isolation
- LEDs
- Trace specifications

Safety Interlocks

Safety interlock on enclosure.

Laser is in operation and enclosure is closed to prevent eye injuries.

Operation cannot be interrupted by user.

Gibran Khalil

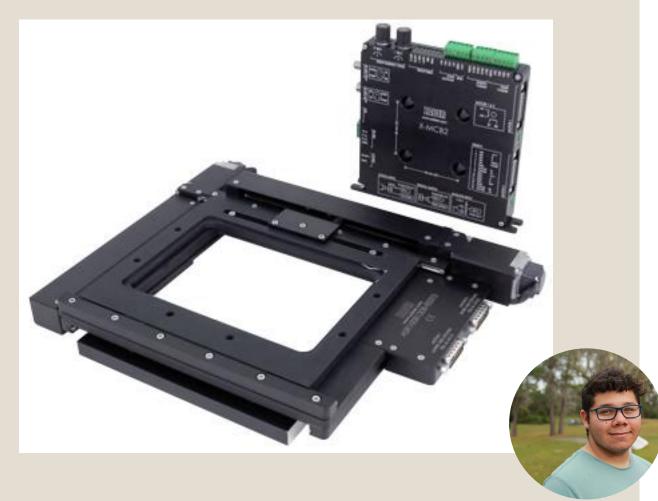
Safety lock specifications

	Banner Engineering SI- LS42DMMGF	IDEC HS1L	Omron Automation and Safety TL4019
Max Holding Force(Locked)	1500N	3000N	1200N
Operating Temperature Range	-20C to 70C	-20C to 55C	
Power Consumption	4.4W	4.8W	8W
Operating Voltage	110/230VAC or 24VAC/VDC	24VDC	24VAC/24VDC Or 110VAC
Switch Operations per hour.	600	<mark>900</mark>	
Maximum Actuator Speed	0.5m/s	<mark>1m/s</mark>	0.33m/s
Mechanical Life operations	1000000	1000000	1000000

~200\$

~552\$

~426\$


Price

XY Table

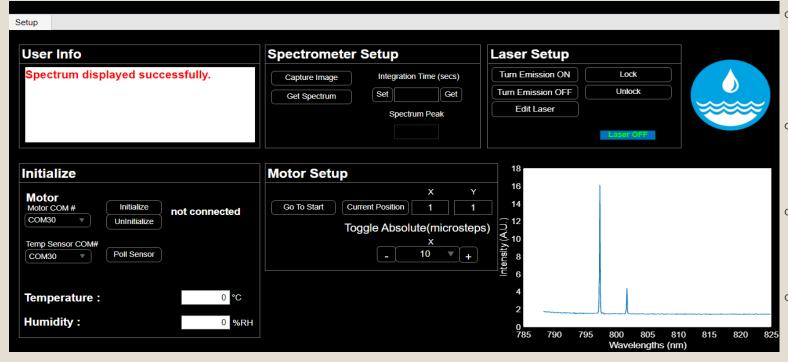
Allows usage of well plate

Multiple samples allowed at once for mass data gathering

High resolution allows for accurate laser usage

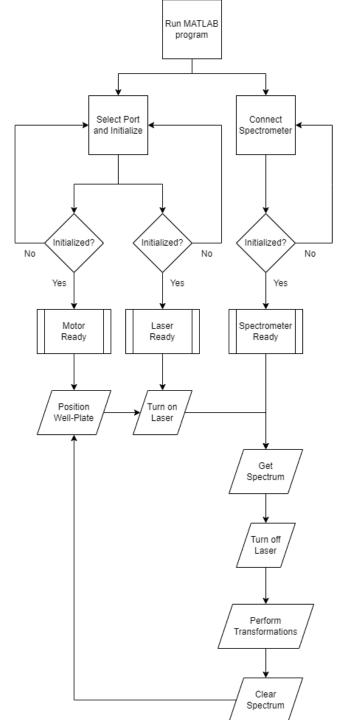
XY table specifications

XY Table Model	ZABER ASR	PI L-731	MOXY-01-100-100
Controller compatibility.	XMCC With autodetect	None included manufacturer has recommended list	None included or sold by manufacturer
Travel Range	100x120	205x205	100x100
Resolution	0.15625um	1nm	1.25um
Motor type	Stepper (2 phase)	DC Motor	NEMA17 Stepper motor
Max Speed	85mm/s	50m/s-90mms	20mm/s
Price	Order Dependent	Order Dependent	2739\$
Operating Temperature range	0C to 50C	5C to 40C	Unknown


Computer Specifications

- MATLAB and supporting libraries have specifications to be able to run
- Large storage is required to store all the data that will be used to perform calculations.
- RAM is an important aspect to be able to perform the calculations themselves.

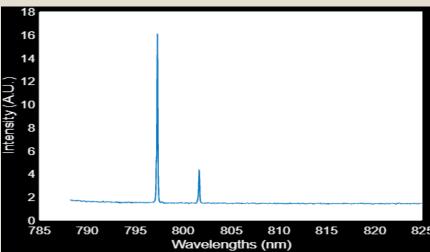
	Latte Panda	Dell XPS 13 9315	ASUS ZenBook Q526FA
Processor	Intel Atom x5-Z8350	Intel Core i5-1230U	Intel Core i7-8565U
Number of Cores	4	8	4
Storage Type	HDD	HDD	SSD-HDD Hybrid
Storage Capacity	64 GB	256 GB	1128 GB
RAM	4 GB	8 GB	16 GB
Operating System	Windows 10	Windows 11	Windows 11
System Type	64-bit	64-bit	64-bit


Sebastien Jouhaud

Graphical User Interface

- The GUI is used to control the system as a whole and allows the user to make the adjustments available to them as they see fit.
- Most of the features in the GUI require user input in order to make it as user friendly as possible.
- Initialization and control of the various components is made through the GUI.
- Motor positioning, laser state, and safety features are controlled through the GUI.


Software Block Diagram



Fourier Transformation

- Camera takes multiple pictures of the fringes.
- The IDS Eye camera communicates with MATLAB in order to convert these images into mathematical matrices.
- A Fourier transform is then applied to the numerical matrix, and a graph is created.
- This graph has peaks at certain wavelengths that describe the chemical makeup of the sample.

Budget

ITEM	QUANTITY	PRICE ESTIMATE
Laser	1	Acquired
Gratings	2	~\$160
Lens	3-4	~\$260
CCD	1	\$700
Motor translation stage	1	\$1495
XY Table with additional components	1	\$5876
Polarized beam splitter	1	\$880
Power Source	1	\$10
Custom PCB	1-2	\$80
Custom Enclosure	1	TBD
Microcontroller	1	\$15
Connectors	3	\$10
Misc. Components	TBD	\$30
TOTAL	N/A	~\$9516

Thanks for listening!

Q&A?